TWO FLAVONOIDS FROM <u>Iboza riparia</u> AND THE UNAMBIGUOUS ASSIGNMENTS OF THE <sup>1</sup>H AND <sup>13</sup>C NMR SIGNALS OF THEIR METHOXYLE GROUPS

Akhtar HAIDER $^{a}$ , Alphonse KELECCM $^{b}$ , Amabile MATIDA $^{c}$  and Raymond ZELNIK $^{\star,c}$ 

a.Institut de Chimie Organique, Université de Lausanne 2, rue de La Barre, 1005 Lausanne, <u>SWITZERLAND</u> b.Department of General Biology, Universidade Federal Fluminense, C.P. 100.183, 24.000 Niterói, RJ <u>BRAZIL</u>. c.Serviço de Química Orgânica, Instituto Butantan C.P. 65, 01000 São Paulo, SP <u>BRAZIL</u>.

## Recebido em 16/12/87

 $\frac{Abstract}{ritin, were isolated from the leaves of } \frac{1bo}{L}$   $\frac{za\ riparia}{ritin, were isolated from the leaves of } \frac{1bo}{L}$   $\frac{za\ riparia}{riparia}.$  Assignment of the  $^{1}H$  NMR spectra came from NOE experiments, and unequivocal attributions of all non-quaternary carbon signals is demonstrated from the  $^{1}H^{-13}C$  shift-correlated 2D-NMR spectrum of salvigenin.

In recent years, attention focused on the isolation of new metabolites from the Labiate <u>Iboza riparia</u> NE Brown<sup>1,2</sup>, a shrub used in folk medicine as a stomach aid. Examination of an acetone extract the leaves now furnished two rare flavonoids which were identified spectroscopically 5-hydroxy-6,7,4'-trimethoxyflavone  $\underline{1}$  (salvigenin) 3-5 and 5,4-dihydroxy-6,7-dimethoxyflavone 2 (cirsimaritin) 5-7 We wish to report the unambiguous assignment of their  $^{
m 1}$ H and  $^{
m 13}$ C NMR spectra by a combination of NOE measurements and  $^{1}H-^{13}C$  shift-correlated 2D-NMR spectroscopy. This constitutes the first report of flavonoids from the genus Iboza.

## 1H NMR spectra.

NOE experiments allowed complete assignments of the  $^1$ H NMR signals of 1 and 2 (Table 1). Thus in flavone 1 attribution of pos itions C-7 and C-4' for the methoxyls resonating at  $\delta$  3.96 and 3.89 respectively from their interaction with the protons at C-8 ( $\delta$  6.53) and C-3'/C-5' ( $\delta$  7.00). third MeO group corresponding to the signal at 8 3.92 did not interact with any H, confir ming its location at C-6. Finally, the remain ing signal at  $\delta$  6.56 was attributed to H-3, a finding which rectifies previously reported data<sup>3</sup>. Similarly, the NOE experiments observed for flavone 2 allowed to allocate the signal at  $\delta$  4.03 to the C-7 MeO group which interacts with the proton at C-8 ( $\delta$  7.02). The remaining MeO group and the proton resonating at  $\delta$  6.95 did not interact with any other protons and were thus identified as the C-6 methoxyl and the H-3 respectively.

13C NMR spectra.

The <sup>13</sup>C NMR spectrum of flavone been reported earlier but the MeO were not rigorously assigned. Indeed, considerations on steric hindrance, been claimed 10 that, in a 6.7-dimethoxyflavone, the O-methyl at C-7 should appear more shielded than the one at C-6. This is now being demonstrated from the H-12 shiftcorrelated 2D-NMR spectrum of  $\underline{1}$  (Fig. 1) which brought unequivocal attribution of all non-quaternary carbon signals. Thus carbons resonating at  $\delta$  55.43, 56.20 and 60.70 were found to bear the methoxyls whose appear at 5 3.89, 3.96 and 3.92 respectively and were consequently identified as the C-4', C-7 and C-6 MeO groups. Similarly, the remaining cross-peaks of the 2D-NMR spectrum furnished clear attributions of C-3, C-8, C-2'/C-6' and C-3'/C-5'. The corresponding signals of 2 were attributed by analogy with 1. Final conclusions are consigned Table 2 11.



Figure 1:  ${}^{1}\text{H}$ - ${}^{13}\text{C}$  2D-NMR of  $\underline{1}$ 

Table 1:  ${}^{1}$ H NMR data (360 MHz) of  ${}^{1}$  and  ${}^{2}$ 

| н                   | 1                      | 2                   |
|---------------------|------------------------|---------------------|
| 3                   | 6.56 s                 | 6.95 s              |
| 8                   | 6.53 s                 | 7.02 s              |
| 2'/6'               | 7.83 d <sup>9.25</sup> | 8.07 d <sup>8</sup> |
| 3'/5'               | 7.00 d <sup>9.25</sup> | 7.04 d <sup>8</sup> |
| 6-осн <sub>3</sub>  | 3.92 s                 | 3.85 s              |
| 7-осн <sub>3</sub>  | 3.96 s                 | 4.03 s              |
| 4'-OCH <sub>3</sub> | 3.89 s                 | -                   |

Recorded on Brücker WH-360 apparatus.

 $\underline{\mathbf{1}}$  was dissolved in CDCl  $_3$  and  $\underline{\mathbf{2}}$  in DMSO-d  $_6$  spectra were recorded at room temperature

Table 2 :  $^{13}$ C NMR data (90.5 MHz) of  $\underline{1}$  &  $\underline{2}$ 

| С                   | 19,*  | 1        | <u>2</u> |
|---------------------|-------|----------|----------|
| 2                   | 163.1 | 163.88 s | 164.13 s |
| 3                   | 102.9 | 103.92 d | 102.74 d |
| 4                   | 181.5 | 182.51 s | 182.21 s |
| 5                   | 152.0 | 153.07 s | 152.65 s |
| 6                   | 132.0 | 132.56 s | 132.04 s |
| 7                   | 158.1 | 158.63 s | 158.64 s |
| 8                   | 91.0  | 90.49 d  | 91.57 d  |
| 9                   | 151.7 | 152.95 s | 152.14 s |
| 10                  | 104.9 | 106.00 s | 105.15 s |
| 1'                  | 122.5 | 123.39 s | 121.21 s |
| 2'/6'               | 127.5 | 127.83 d | 128.48 d |
| 3'/5'               | 114.0 | 114.40 đ | 116.01 d |
| 4'                  | 161.9 | 162.55 s | 161.31 s |
| 6-осн <sub>3</sub>  | 59.4  | 60.70 q  | 60.04 q  |
|                     | 55.9  | 56.20 q  | 56.45 q  |
| 4'-OCH <sub>3</sub> | 55.0  | 55.43 q  | -        |

Recorded on a Brücker WH-360 apparatus.

\* recorded in DMSO-d<sub>6</sub> at 25.1 MHz (100°C)

 $\underline{\mathbf{1}}$  was dissolved in CDC1 $_3$  and  $\underline{\mathbf{2}}$  in DMSO-d $_6$  spectra were recorded at room temperature

Acknowledgements - Support by the Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant Nº 84/2813-4) is gratefully acknow-

ledged. We thank Professors A. Ulubelen, Uni versity of Istambul, and S. Passannanti, University of Palermo, for samples of salvigenin and cirsimaritin.

## References.

- Kelecom, A.; Zelnik, R.; Rabenhorst, E.;
   <u>Anais</u> <u>Acad</u>. <u>bras</u>. <u>Ciênc</u>. (1983) 55, 351
   and references cited therein.
- Van Puyvelde, L.; De Kimpe, N.; Borremans, F.; Zhang, W.; Schamps, N.; <u>Phytochemistry</u> (1987) 26, 493 and references cited ther<u>e</u> in.
- Xaasan, C.C.; Cilmi, C.X.; Faarax, M.X.;
   Passannanti, S.; Piozzi, F.; Paternostro,
   M.; Phytochemistry (1980) 19, 2229.
- 4. Wollenweber, E.; Wassum, M.; <u>Tetrahedron</u> Letters (1972) 797.
- Ulubelen, A.; Ozturk, S.; Isildatici, S.;
   <u>J. Pharm. Sci.</u> (1978) 57, 1037.
- 6. Brieskorn, C.H.; Biechele, W.; <u>Tetrahedron</u> <u>Letters</u> (1969) 2603.
- Ulubelen, A.; Miski, M.; Neuman, P.; Mabry,
   I.J.; J. Natl. Prod. (1979) 42, 261.
- González, A.G.; Fraga, B.M.; Hernández, M. G.; Larruga, F.; Luiz, J.G.; Ravelo, A.G. J. Natl. Prod. (1978) 41, 279.
- 9. Mabry, T.J.; Markham, K.R.; Chari, V.M.; "<u>The Flavonoids</u>: <u>Advances in Research</u>" (J.B. Harborne & T.J. Mabry, eds) chap 2, spectrum nº24, Chapman and Hall, London-New York (1982).
- 10. Panchipol, K.; Waterman, P.G.; Phytochemistry (1978) 17, 1363.
- 11. This is part VI of the series "Chemistry of Brazilian Labiatae"; for part V, see reference 1. Correspondance should be adressed to R. Zelnik.